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Abstract

Combined free and forced convection ~ow in a parallel!plate vertical channel is analysed in the fully developed region
by taking into account the e}ect of viscous dissipation[ The two boundaries are considered as isothermal and kept either
at equal or at di}erent temperatures[ The velocity _eld\ the temperature _eld and the Nusselt numbers are obtained by
a perturbation series method which employs a perturbation parameter proportional to the Brinkman number[ Dimen!
sionless coe.cients which allow the evaluation of the dimensionless mean velocity\ of the dimensionless bulk temperature
and of the Nusselt numbers are determined[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A constant de_ned by equation "5# ðPa m−0Ł
an\ bn dimensionless coe.cients de_ned by equation
"36#
Br Brinkman number de_ned in equation "01#
cp speci_c heat at constant pressure ðJ kg−0 K−0Ł
cn\ dn dimensionless coe.cients de_ned by equations
"49# and "40#\ respectively
D � 1L\ hydraulic diameter ðmŁ
g acceleration due to gravity ðm s−1Ł
Gr Grashof number de_ned in equation "01#
j non!negative integer number
k thermal conductivity ðW m−0 K−0Ł
L channel width ðmŁ
n non!negative integer number
Nu−\ Nu¦ Nusselt numbers de_ned by equation "13#
Nu�

−\ Nu�

¦ Nusselt numbers de_ned by equation "14#
p pressure ðPaŁ
P � p¦r9gX\ di}erence between the pressure and the
hydrostatic pressure ðPaŁ
Pr Prandtl number de_ned in equation "01#
Re Reynolds number de_ned in equation "01#
RT temperature di}erence ratio de_ned in equation "01#

� Corresponding author[

T temperature ðKŁ
T0\ T1 prescribed boundary temperatures ðKŁ
T9 reference temperature de_ned in equation "02#
u dimensionless velocity component in the X!direction
de_ned in equation "01#
un"y# dimensionless functions de_ned by equation "25#
u¹ mean value of u de_ned in equation "05#
U velocity component in the X!direction ðm s−0Ł
U9 reference velocity de_ned in equation "02#
U velocity ðm s−0Ł
X streamwise coordinate ðmŁ
y dimensionless transverse coordinate de_ned in equa!
tion "01#
Y transverse coordinate ðmŁ[

Greek symbols
a � k:"r9cp#\ thermal di}usivity ðm1 s−0Ł
b thermal expansion coe.cient ðK−0Ł
DT reference temperature di}erence de_ned either by
equation "03# or by equation "04#
o dimensionless parameter de_ned by equation "24#
u dimensionless temperature de_ned by equation "01#
ub dimensionless bulk temperature de_ned by equation
"06#
m dynamic viscosity ðPa sŁ
n � m:r9\ kinematic viscosity ðm1 s−0Ł
J dimensionless parameter de_ned by equation "01#
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Jc critical value of J for the onset of ~ow reversal
r mass density ðkg m−2Ł
r9 value of the mass density when T � T9 ðkg m−2Ł[

0[ Introduction

Many analyses of combined forced and free convection
~ow in a parallel!plate vertical channel are available in
the literature[ A comprehensive review of the literature
on this subject can be found in Aung ð0Ł[ Analytical and
numerical solutions for the temperature and the velocity
_eld have been obtained both for prescribed wall tem!
peratures and for prescribed wall heat ~uxes[ However\
all these theoretical studies are based on the hypothesis
that the e}ect of viscous dissipation in the ~uid is negli!
gible[

One of the earliest analyses of laminar and fully
developed mixed convection in a parallel!plate vertical
channel with prescribed uniform temperatures at the
boundaries can be found in Tao ð1Ł[ More recent inves!
tigations on this subject are presented in Aung and
Worku ð2Ł\ in Cheng et al[ ð3Ł and in Hamadah and
Wirtz ð4Ł[ These authors point out that the temperature
distribution in the ~uid is uniform when both boundaries
are at the same temperature "symmetric heating# and is
a linear function of the transverse coordinate when the
boundaries are kept at di}erent temperatures "asym!
metric heating#[ Therefore\ in the case of asymmetric
heating\ heat transfer between the two boundaries of the
channel occurs by pure conduction "conduction regime#[
Moreover\ the buoyancy force in~uences the velocity pro!
_le and can give rise to ~ow reversal both for upward
~ow and for downward ~ow[

In the literature\ both for prescribed wall temperatures
and for prescribed wall heat ~uxes\ the analyses of fully
developed mixed convection are performed by analytical
methods\ while the developing ~ow is analyzed by
numerical techniques ð5Ð7Ł[

The aim of this paper is to extend the studies available
in the literature on laminar and fully developed mixed
convection in a parallel!plate vertical channel with pre!
scribed wall temperatures\ by taking into account the
e}ect of viscous dissipation[ This e}ect is expected to be
relevant for ~uids with high values of the dynamic vis!
cosity as well as for high!velocity ~ows[ Indeed\ when
viscous dissipation cannot be neglected\ the temperature
_eld is dependent on the velocity _eld through a nonlinear
term in the energy balance equation[ This coupling term
is absent when viscous dissipation is neglected[ In the case
of asymmetric heating\ a consequence of this coupling
is that no conduction regime is present when viscous
dissipation is taken into account[ In the present paper\
the temperature pro_le and the velocity pro_le are
obtained by a perturbation method based on the per!
turbation parameter Br Gr:Re\ where Br is the Brinkman

number\ Gr is the Grashof number and Re is the Reynolds
number[

1[ Governing equations

In this section\ the momentum balance equation and
the energy balance equation are written in a dimen!
sionless form[ Then\ the solutions of these equations in
the case of negligible viscous dissipation and in the case
of forced convection are outlined[

Let us consider a Newtonian ~uid which steadily ~ows
in a parallel!plate vertical channel[ The thermal con!
ductivity\ the thermal di}usivity\ the dynamic viscosity
and the thermal expansion coe.cient are considered as
constant[ Moreover\ the Boussinesq approximation as
well as the equation of state

r � r9 ð0−b"T−T9#Ł "0#

are supposed to hold[ The choice of the spatial coor!
dinates is described in Fig[ 0[ In particular\ the X!axis is
parallel to the gravitational _eld\ but with the opposite
direction[ It is assumed that the only nonzero component
of the velocity _eld U is the X!component U[ Thus\ as a
consequence of the mass balance equation\ one obtains

Fig[ 0[ Drawing of the system and of the coordinate axes[
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1U
1X

� 9 "1#

so that U depends only on Y[ The streamwise and the
transverse momentum balance equations yield ð8Ł

bg"T−T9#−
0
r9

1P
1X

¦n
d1U

dY1
� 9 "2#

1P
1Y

� 9 "3#

where P � p¦r9gX is the di}erence between the pressure
and the hydrostatic pressure[ On account of equation "3#\
P depends only on X so that equation "2# can be rewritten
as

bg"T−T9#−
0
r9

dP
dX

¦n
d1U

dY1
� 9[ "4#

Let us assume that the walls of the channel are isothermal[
In particular\ the temperature of the boundary Y � −L:1
is T0\ while the temperature at Y � L:1 is T1\ with T1− T0[
These boundary conditions are compatible with equation
"4# if and only if dP:dX is independent of X[ Therefore\
there exists a constant A such that

dP
dX

� A[ "5#

On account of equation "5#\ by evaluating the derivative
of equation "4# with respect to X\ one obtains

1T
1X

� 9 "6#

so that also the temperature depends only on Y[
By taking into account the e}ect of viscous dissipation\

the energy balance equation can be written as ð8Ł

a
d1T

dY1
¦

n

cp 0
dU
dY1

1

� 9[ "7#

Equations "4# and "7# allow one to obtain a di}erential
equation for U\ namely

d3U

dY3
�

bg
acp 0

dU
dY1

1

[ "8#

The boundary conditions on U are both the no slip con!
ditions

U"−L:1# � U"L:1# � 9 "09#

and those induced by the boundary conditions on T and
by equations "4# and "5#\ namely

d1U

dY1bY� −L:1

�
A
m

−
bg"T0−T9#

n
\

d1U

dY1bY� L:1

�
A
m

−
bg"T1−T9#

n
[ "00#

The solution of equations "8#Ð"00# yields the velocity

_eld[ Equations "8#Ð"00# can be written in a dimen!
sionless form by employing the dimensionless quantities

u �
U
U9

\ u �
T−T9

DT
\ y �

Y
D

\ Gr �
gbDTD2

n1
\

Re �
U9D

n
\ Pr �

n

a
\ Br �

mU1
9

kDT
\

J �
Gr
Re

\ RT �
T1−T0

DT
"01#

where D � 1L is the hydraulic diameter[ The reference
velocity U9 and the reference temperature T9 are given by

U9 � −
AD1

37m
\ T9 �

T0¦T1

1
[ "02#

Moreover\ the reference temperature di}erence DT is
given either by

DT � T1−T0 "03#

if T0 ³ T1\ or by

DT �
n1

cpD
1

"04#

if T0 � T1[ As a consequence\ the dimensionless par!
ameter RT can only assume the values 9 or 0[ More
precisely\ the temperature di}erence ratio RT is equal
to 0 for asymmetric heating\ T0 ³ T1\ while RT � 9 for
symmetric heating\ T0 � T1[

The dimensionless mean velocity u¹ and the dimen!
sionless bulk temperature ub are given by

u¹ � 1 g
0:3

−0:3

u dy "05#

ub �
1
u¹ g

0:3

−0:3

uu dy[ "06#

Equation "5# implies that A can be either positive or
negative[ If A × 9\ then U9\ Re and J are negative\ i[e[
the ~ow is downward[ On the contrary\ if A ³ 9\ the ~ow
is upward\ so that U9\ Re and J are positive[ On account
of equation "01#\ equations "8#Ð"00# can be rewritten as

d3u

dy3
� J Br 0

du
dy1

1

"07#

u"−0:3# � u"0:3# � 9 "08#

d1u

dy1by� −0:3

� −37¦
RTJ

1
\

d1u

dy1by� 0:3

� −37−
RTJ

1
[

"19#

As a consequence of equations "4#\ "7# and "01#\ the
dimensionless temperature u can be evaluated either by
integrating the equation
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d1u

dy1
¦Br 0

du
dy1

1

� 9 "10#

or by the equation

u � −
0
J 037¦

d1u

dy11[ "11#

Equations "07#Ð"11# show that the dimensionless velocity
pro_le and the dimensionless temperature pro_le depend
on three parameters\ namely the ratio J � Gr:Re\ the
Brinkman number Br and the temperature di}erence
ratio RT[ A Nusselt number can be de_ned at each bound!
ary\ namely

Nu− �
D
DT

dT
dYbY� −L:1

\ Nu¦ �
D
DT

dT
dYbY�L:1

[ "12#

On account of equation "12#\ it is easily proved that Nu−

and Nu¦ can be employed to evaluate the boundary heat
~uxes[ Indeed\ −kDTNu−:D and −kDTNu¦:D yield the
Y!component of the heat ~ux density evaluated at
Y � −L:1 and at Y � L:1\ respectively[ As a conse!
quence of equations "01# and "11#\ equation "12# can be
rewritten as

Nu− �
du

dyby� −0:3

� −
0
J

d2u

dy2by� −0:3

\

Nu¦ �
du

dyby�0:3

� −
0
J

d2u

dy2by�0:3

[ "13#

On the other hand\ the customary de_nition of the Nus!
selt numbers is based on the bulk temperature as the
reference ~uid temperature\ namely

Nu�

− �
1

RT¦1ub

du

dyby� −0:3

�
1Nu−

RT¦1ub

\

Nu�

¦ �
1

RT−1ub

du

dyby�0:3

�
1Nu¦

RT−1ub

[ "14#

On account of equations "01# and "14#\ it is easily proved

that Nu�

− and Nu�

¦ are such that k"T0−Tb#Nu�

−:D and
k"Tb−T1#Nu�

¦:D yield the Y!component of the heat ~ux
density evaluated at Y � −L:1 and at Y � L:1\ respec!
tively[ However\ equation "14# shows that Nu�

− and
Nu�

¦ are ill!de_ned if ub � 2RT:1[
Equation "10# shows that\ if the viscous dissipation is

negligible so that Br � 9\ the dimensionless temperature
u and the dimensionless velocity u are uncoupled[ In this
case\ equations "07#Ð"19# can be easily solved and yield

u � 0
Jy
2

RT¦131 0
0
05

−y11[ "15#

Equation "15# corresponds to the velocity pro_le deter!
mined by Aung and Worku ð2Ł[ By substituting equation
"15# in equations "11# and "13#\ one obtains

u � 1RTy\ Nu− � Nu¦ � 1RT[ "16#

The substitution of equations "15# and "16# in equations
"05# and "06# yields u¹ � 0 and ub � JRT:1779[ On
account of equation "16#\ when Br � 9\ heat is transferred
by pure conduction for asymmetric heating "RT � 0#\
while\ for symmetric heating "RT � 9#\ the temperature is
uniform and no heat transfer occurs[ Both for symmetric
heating with an arbitrary value of J and for asymmetric
heating with J � 9\ equation "15# yields the usual HagenÐ
Poiseuille velocity pro_le[ This result is conceivable since\
for symmetric heating\ equation "16# shows that the tem!
perature is uniform\ so that no buoyancy force can be
present if viscous dissipation is neglected[ Moreover\ for
asymmetric heating\ the hypothesis J � 9 implies that
Gr � 9\ i[e[ that buoyancy forces are vanishing[

In the case of asymmetric heating\ when buoyancy
forces are dominant\ i[e[ when J : 2�\ equations "01#
and "15# yield

UD
n Gr

�
u
J

� 0
y
2

¦
13
J 1 0

0
05

−y11 :
J:2�

y
2 0

0
05

−y11[
"17#

Equation "17# yields Batchelor|s velocity pro_le for free
convection ð09Ł[

With T0 ³ T1 and U9 × 9 "upward ~ow#\ one expects
that for a su.ciently high value of J a ~ow reversal
induced by the buoyancy forces occurs at the cool wall
y � −0:3[ On account of equation "15#\ the critical value
Jc such that for J × Jc this ~ow reversal occurs can be
obtained by the condition

9 �
du
dyby� −0:3

� 01−
Jc

13
"18#

i[e[ Jc � 177[ For T0 ³ T1 and U9 ³ 9 "downward ~ow#\
one expects that there exists a negative critical value Jc

of J such that for J ³ Jc a ~ow reversal occurs at the
hot wall y � 0:3[ In analogy with equation "18#\ the criti!
cal value Jc can be obtained by the relation

9 �
du
dyby�0:3

� −01−
Jc

13
"29#

i[e[ Jc � −177[ In Fig[ 1\ plots of u vs y expressed by
equation "15# are reported for asymmetric heating
"RT � 0# with J � 9\ J � 199 and J � 399[ As expected\
the plot with J � 399 presents a ~ow reversal near the
cool wall y � −0:3[ As it can be easily inferred from
equation "15#\ the plots of u for J � −199 and J � −399
are easily obtained from Fig[ 1 by performing a re~ection
of the y!axis[

Another simple solution of equations "07#Ð"10# can be
obtained when buoyancy forces are negligible and viscous
dissipation is relevant[ In this case\ the parameter
J � Gr:Re is zero\ so that a purely forced convection
occurs[ Obviously\ the HagenÐPoiseuille velocity pro_le\

u � 130
0
05

−y11 "20#
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Fig[ 1[ Plots of u vs y in the case of asymmetric heating\ for di}erent values of J and Br � 9[

is present within the channel[ Indeed\ both for symmetric
and for asymmetric heating\ equation "20# is the solution
of equations "07#Ð"19# when J � 9[ Since the boundary
conditions on u are u"−0:3# � −RT:1 and
u"0:3# � RT:1\ equations "10# and "20# yield

u � −081Br y3¦1RTy¦
2Br
3

[ "21#

By substituting equations "20# and "21# in equations "05#
and "06#\ one obtains u¹ � 0 and ub � 13Br:24[ Equations
"13# and "21# yield

Nu− � 1RT¦01Br\ Nu¦ � 1RT−01Br "22#

while\ on account of equations "14# and "22#\ one obtains

Nu�

− � 039
RT¦5Br

24RT¦37Br
\ Nu�

¦ � 039
RT−5Br

24RT−37Br
[

"23#

Equations "21# and "23# agree with the results obtained
by Cheng and Wu ð00Ł in the case of forced convection
with asymmetric heating[ For symmetric heating
"RT � 9#\ equation "23# yields Nu�

− � Nu�

¦ � 24:1[ The
same value of Nu�

− and Nu�

¦ is obtained for asymmetric
heating with Br : �[ Equation "22# reveals that\ for
asymmetric heating with Br ³ 0:5\ the wall heat ~ux at
y � 0:3 is directed inside the channel\ while at y � −0:3
is directed outside the channel[ On the other hand\ for
asymmetric heating with Br × 0:5 and for symmetric
heating with any nonzero value of Br\ the wall heat ~ux
is directed outside the channel both at y � 0:3 and at
y � −0:3[ In Fig[ 2\ plots of u vs y expressed by equation
"21# are reported for asymmetric heating "RT � 0# with
Br � 9\ Br � 1 and Br � 3[ This _gure shows that\
although the conduction regime holds only for Br � 9\
there exists a region around y � 9 where u is approxi!
mately a linear function of y also for Br � 9[

2[ Perturbation method

In this section\ equations "07#Ð"19# are solved by a
perturbation series method[ Then\ equation "11# is
employed to determine the dimensionless temperature
_eld[

Let us de_ne the dimensionless parameter

o � BrJ � Re Pr
bgD
cp

[ "24#

Equation "24# shows that o does not depend on the ref!
erence temperature di}erence DT[ It is easily veri_ed that\
for a _xed value of J � 9\ the solution of equations "07#Ð
"19# can be expressed by the perturbation expansion

u"y# � u9"y#¦u0"y#o¦u1"y#o1¦= = = � s
�

n�9

un"y#on[

"25#

The perturbation method solution of equations "07#Ð"19#
is as follows ð01Ł[ First\ one substitutes equation "25# in
equations "07#Ð"19# and collects terms having like powers
of o[ Then\ one equates the coe.cient of each power of o

to zero[ Finally\ one is led to a sequence of boundary
value problems which can be solved in succession to
obtain the unknown functions un"y#[

For n � 9\ one obtains the boundary value problem

d3u9

dy3
� 9 "26#

u9"−0:3# � u9"0:3# � 9 "27#

d1u9

dy1 by� −0:3

� −37¦RT

J
1

\
d1u9

dy1 by�0:3

� −37−RT

J
1

[

"28#

The solution of equations "26#Ð"28# is given by
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Fig[ 2[ Plots of u vs y in the case of asymmetric heating\ for di}erent values of Br and J � 9[

u9"y# � 0
Jy
2

RT¦131 0
0
05

−y11[ "39#

Obviously\ the right!hand side of equation "39# coincides
with the dimensionless velocity pro_le in the case Br � 9\
as it can be checked by a comparison with the right hand
side of equation "15#[ On account of equations "07#Ð
"19# and "25#\ one obtains the following boundary value
problem ful_lled by the unknown functions un"y#\ for
every integer n × 9 ]

d3un

dy3
� s

n−0

j�9

duj

dy
dun−j−0

dy
"30#

un"−0:3# � un"0:3# � 9 "31#

d1un

dy1 by� −0:3

�
d1un

dy1 by�0:3

� 9[ "32#

Equation "39# and the iterative solution of equations
"30#Ð"32# allow one to determine the functions un"y#[
Then\ on account of equations "11#\ "25# and "39#\ the
dimensionless temperature u can be expressed as

u"y# � 1RTy−
0
J

s
�

n�0

d1un"y#

dy1
on[ "33#

The Nusselt numbers Nu− and Nu¦ can be evaluated by
employing equations "13# and "33#\ namely

Nu− � 1RT¦ s
�

n�0

ano
n "34#

Nu¦ � 1RT¦ s
�

n�0

bno
n "35#

where the coe.cients an and bn are given by

an � −
0
J

d2un

dy2 by� −0:3

\ bn � −
0
J

d2un

dy2 by�0:3

[ "36#

On account of equations "05#\ "06#\ "25# and "33#\ the
mean dimensionless velocity u¹ and the bulk value of the
dimensionless temperature ub can be expressed as

u¹ � 0¦ s
�

n�0

cno
n "37#

ub �
37
J 0

0
u¹

−01¦
JRT

1779u¹
¦

0
u¹

s
�

n�0

dno
n "38#

where the coe.cients cn and dn are given by

cn � 1g
0:3

−0:3

un"y# dy "49#

dn �
1
J

s
n

j�9 g
0:3

−0:3

duj"y#
dy

dun−j"y#
dy

dy[ "40#

As a consequence of equations "36# and "40#\ an inte!
gration of both sides of equation "30# with respect to y
in the interval ð−0:3\ 0:3Ł yields a relation between the
coe.cients an\ bn and dn\ namely

dn � 1"an¦0−bn¦0#[ "41#

3[ Asymmetric heating

In this section\ the perturbation method described in
the preceding section is employed to analyse the case of
asymmetric heating "RT � 0#[

When the boundary temperatures T0 and T1 are di}er!
ent\ both the dimensionless velocity u and the dimen!
sionless temperature u depend on the dimensionless par!
ameters o and J[ When the ~ow is upward\ o and J are
positive[ On the other hand\ when the ~ow is downward\
o and J are negative[ Although the sign of o and that of



A[ Barletta:Int[ J[ Heat Transfer 30 "0887# 2490Ð2402 2496

Table 0
Values of the coe.cients an\ bn\ cn and dn for asymmetric heating with J � 099 and J � 499

J � 099 J � 499

n an −bn cn dn an −bn cn dn

0 8[424×09−1 0[519×09−0 0[447×09−1 0[493×09−1 2[396×09−1 0[996×09−0 3[547×09−1 8[246×09−2

1 2[124×09−2 3[173×09−2 3[577×09−3 4[572×09−3 7[878×09−3 2[668×09−2 0[381×09−2 4[010×09−3

2 0[152×09−3 0[467×09−3 0[674×09−4 1[311×09−4 6[747×09−4 0[664×09−3 7[154×09−4 1[876×09−4

3 4[344×09−5 5[542×09−5 6[522×09−6 0[097×09−5 3[621×09−5 0[919×09−4 3[683×09−5 0[800×09−5

4 1[404×09−6 2[916×09−6 2[499×09−7 4[219×09−7 2[074×09−6 5[257×09−6 2[958×09−6 0[166×09−6

5 0[102×09−7 0[336×09−7 0[571×09−8 1[531×09−8 1[062×09−7 3[101×09−7 1[940×09−7 7[746×09−8

6 5[932×09−09 6[058×09−09 7[253×09−00 0[236×09−09 0[422×09−8 1[785×09−8 0[311×09−8 5[293×09−09

7 2[976×09−00 2[535×09−00 3[154×09−01 6[991×09−01 0[092×09−09 1[938×09−09 0[901×09−09 3[479×09−00

8 0[597×09−01 0[782×09−01 1[108×09−02 2[588×09−02 7[974×09−01 0[371×09−00 6[246×09−01 2[272×09−01

09 7[495×09−03 8[889×09−03 0[062×09−03 0[870×09−03 5[901×09−02 0[989×09−01 4[323×09−02 1[421×09−02

00 3[448×09−04 4[233×09−04 5[179×09−05 0[961×09−04 3[414×09−03 7[027×09−03 3[957×09−03 0[806×09−03

01 1[369×09−05 1[789×09−05 2[399×09−06 4[747×09−06 2[330×09−04 5[034×09−04 2[979×09−04 0[354×09−04

02 0[240×09−06 0[467×09−06 0[747×09−07 2[115×09−07 1[528×09−05 3[576×09−05 1[243×09−05 0[018×09−05

03 6[333×09−08 7[576×09−08 0[913×09−08 0[678×09−08 1[939×09−06 2[594×09−06 0[703×09−06 7[650×09−07

04 3[020×09−19 3[705×09−19 4[568×09−10 8[874×09−10 0[476×09−07 1[682×09−07 0[397×09−07 5[739×09−08

05 1[295×09−10 1[575×09−10 2[058×09−11 4[591×09−11 0[131×09−08 1[067×09−08 0[988×09−08 4[269×09−19

06 0[184×09−11 0[496×09−11 0[667×09−12 2[047×09−12 8[660×09−10 0[697×09−19 7[517×09−10 3[125×09−10

07 6[290×09−13 7[389×09−13 0[992×09−13 0[677×09−13 6[611×09−11 0[235×09−10 5[796×09−11 2[245×09−11

08 3[024×09−14 3[794×09−14 4[566×09−15 0[905×09−14 5[017×09−12 0[954×09−11 4[282×09−12 1[569×09−12

19 1[240×09−15 1[629×09−15 2[116×09−16 4[685×09−16 3[770×09−13 7[356×09−13 3[189×09−13 1[020×09−13

J are constrained to be equal\ their absolute values are
independent[

In Table 0\ the _rst 19 coe.cients\ an\ bn\ cn and dn

de_ned by equations "36#\ "49# and "40# are evaluated
for J � 099 and J � 499[ In Table 1\ the values of the
Nusselt numbers Nu−\ Nu¦\ Nu�

− and Nu�

¦ are reported
for J � 099 and J � 499[ To obtain the values reported
in Table 1\ the _rst 19 terms of the perturbation series

Table 1
Values of Nu−\ Nu¦\ Nu�

− and Nu�
¦ for asymmetric heating with J � 099 and J � 499

J � 099 J � 499

o Nu− Nu¦ Nu�
− Nu�

¦ Nu− Nu¦ Nu�
− Nu�

¦

9 1[999 1[999 2[639 3[188 1[999 1[999 1[858 5[017
9[4 1[937 0[807 2[795 3[043 1[906 0[838 2[991 4[831
0 1[988 0[723 2[761 3[992 1[924 0[784 2[923 4[644
1 1[194 0[546 3[900 2[570 1[961 0[671 2[090 4[260
2 1[208 0[360 3[045 2[216 1[002 0[547 2[060 3[869
3 1[332 0[160 3[298 1[824 1[046 0[411 2[133 3[433
4 1[467 0[947 3[360 1[387 1[196 0[269 2[210 3[973
5 1[615 9[717 3[531 1[994 1[153 0[199 2[395 2[466
6 1[778 9[467 3[714 0[330 1[220 0[993 2[491 2[992
7 2[969 9[294 4[911 9[675 1[303 9[662 2[501 1[229
8 2[164 9[993 4[123 9[900 1[419 9[389 2[637 0[386

09 2[497 −9[221 4[354 −9[817 1[560 9[008 2[829 9[269

are su.cient when J � 099\ while the _rst 29 terms are
necessary for the computation when J � 499[

The values of an\ bn\ cn and dn reported in Table 0 refer
to upward ~ows[ However\ as is shown in the following\
the values reported in Table 0 can also be employed to
evaluate an\ bn\ cn and dn for downward ~ow with
J � −099 and J � −499[ Indeed\ the dimensionless vel!
ocity u is determined by equations "07#Ð"19#[ It is easily
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veri_ed that\ when RT � 0\ these equations are invariant
under the transformation

u : u\ o : o\ J : −J\ y : −y[ "42#

This symmetry is purely mathematical\ since\ as it has
been pointed out above\ it is physically meaningless to
keep o _xed while the sign of J is reversed[ As a conse!
quence of equation "25# and of the symmetry of equations
"07#Ð"19# expressed by equation "42#\ the ~ow reversal
transformation J : −J implies un"y# : un"−y#[ Then\
on account of equations "36#\ "49# and "40#\ the ~ow
reversal transformation J : −J yields an : bn\ bn : an\
cn : cn and dn : −dn[

In Table 2\ the Nusselt numbers Nu−\ Nu¦\ Nu�

− and
Nu�

¦ are reported for J � −099 and J � −499[ As in
the corresponding cases of upward ~ow\ the _rst 19 terms
of the perturbation series are employed for the com!
putation when J � −099\ while the _rst 29 terms are
necessary when J � −499[

Tables 1 and 2 show that heat transfer is enhanced at
y � −0:3 when the modulus of o is increased\ since both
Nu− and Nu�

− increase[ On the other hand\ both Nu¦

and Nu�

¦ are decreasing functions of the modulus of o[
This behaviour of the heat transfer coe.cient is exhibited
for upward as well as for downward ~ow[ In particular\
when J � 099\ Nu¦ and Nu�

¦ are zero for a value of o in
the interval 8³ o ³ 09 and for greater values of o they
become negative[ This sign change of Nu¦ and Nu�

¦ is
due to the change of direction of the heat ~ux density
vector at the hot wall when viscous dissipation is
su.ciently relevant[

In Fig[ 3\ plots of u and u in the case J � 099 are
reported for o � 9\ o � 7 and o � 01[ The _rst 19 terms
of the perturbation series are su.cient to obtain these
plots[ Figure 3 shows that the dimensionless velocity and
the dimensionless temperature at each position are

Table 2
Values of Nu−\ Nu¦\ Nu�

− and Nu�
¦ for asymmetric heating with J � −099 and J � −499

J � −099 J � −499

−o Nu− Nu¦ Nu�
− Nu�

¦ Nu− Nu¦ Nu�
− Nu�

¦

9 1[999 1[999 3[188 2[639 1[999 1[999 5[017 1[858
9[4 1[979 0[842 3[326 2[565 1[938 0[872 5[200 1[826
0 1[047 0[897 3[460 2[503 1[986 0[856 5[383 1[894
1 1[297 0[710 3[712 2[381 1[077 0[824 5[748 1[730
2 1[340 0[639 4[948 2[265 1[161 0[893 6[116 1[666
3 1[477 0[552 4[167 2[153 1[241 0[763 6[591 1[602
4 1[608 0[480 4[374 2[045 1[316 0[734 6[880 1[538
5 1[734 0[412 4[568 2[940 1[386 0[704 7[286 1[473
6 1[855 0[347 4[752 1[840 1[453 0[675 7[718 1[406
7 2[972 0[285 5[925 1[742 1[516 0[646 8[184 1[349
8 2[084 0[226 5[190 1[648 1[576 0[617 8[794 1[279

09 2[293 0[170 5[247 1[556 1[632 0[588 09[263 1[209

increasing functions of o[ This behaviour can be explained
as follows[ A greater energy generated by viscous dis!
sipation yields a greater ~uid temperature and\ as a conse!
quence\ a greater buoyancy force[ The increase of the
buoyancy force implies an increase of the velocity in the
upward direction[

In Fig[ 4\ the case J � 499 is considered[ The plots of
u for o � 9 and o � 7 display a ~ow reversal close to the
boundary y � −0:3\ while no ~ow reversal is present in
the plot for o � 01[ Indeed\ viscous dissipation tends to
increase the buoyancy force at each position and\ as a
consequence\ it tends to contrast the ~ow reversal at the
cool wall[

Figures 5 and 6 refer to J � −099 and J � −499\
respectively[ The plots of u and u reported in these _gures
reveal that\ if the Brinkman number is increased\ u
decreases and u increases[ However\ the change of the
dimensionless temperature due to viscous dissipation is
not so sensible as in the case of upward ~ow[ Figure 6
shows that the ~ow reversal next to the hot wall becomes
stronger as Br increases[ Indeed\ the behaviour of the
dimensionless velocity pro_le for increasing values of Br
is explained again by the increase of the buoyancy forces[

4[ Symmetric heating

In this section\ the perturbation method is employed
to study the velocity pro_les and the temperature pro_les
in the case of symmetric heating "RT � 9#[

When the boundary temperatures T0 and T1 are equal\
equations "07#Ð"19# show that the dimensionless velocity
u is a symmetric function of y which depends only on
the dimensionless parameter o[ Therefore\ on account of
equation "11#\ also u is a symmetric function of y and is
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Fig[ 3[ Plots of u and u vs y in the case of asymmetric heating\ for di}erent values of o and J � 099[

Fig[ 4[ Plots of u and u vs y in the case of asymmetric heating\ for di}erent values of o and J � 499[
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Fig[ 5[ Plots of u and u vs y in the case of asymmetric heating\ for di}erent values of o and J � −099[

Fig[ 6[ Plots of u and u vs y in the case of asymmetric heating\ for di}erent values of o and J � −499[
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such that Ju depends only on o[ Equation "25# ensures
that the symmetry of u implies the symmetry of un"y# for
every n − 9[ Moreover\ functions un"y# do not depend on
J[ As a consequence of the symmetry of u and of un"y#\
equations "13#\ "14# and "36# imply that Nu¦ � −Nu−\
Nu�

¦ � Nu�

− and bn � −an[ Equations "13# and "14#
ensure that JNu− and Nu�

− are uniquely determined by
o\ while equations "36#\ "49# and "40# show that Jan\ cn

and Jdn do not depend on J[ As in the case of asymmetric
heating\ both o and J are positive when the ~ow is
upward\ while they are negative when the ~ow is down!
ward[

In Table 3\ the _rst 19 coe.cients Jan\ cn and Jdn are
evaluated[ In Table 4\ the values of JNu− and Nu�

− are
reported in the range −09 ¾ o ¾ 09[ To obtain the values
reported in Table 4\ the _rst 19 terms of the perturbation
series are su.cient[ The value of Nu�

− for o � 9 is
obtained as a limit for o : 9 and coincides with that given
by equation "23# when RT � 9\ i[e[ 24:1 � 06[4[

In Fig[ 7\ the velocity u and the product Ju are plotted
vs y for some values of o in the range −01¾ o ¾ 01[ This
_gure shows that the e}ect of viscous dissipation on the
dimensionless velocity pro_le and on the dimensionless
temperature pro_le is more signi_cant in the case of
upward ~ow "o × 9# than in the case of downward ~ow
"o ³ 9#[ This behaviour is similar to that observed in the
case of asymmetric heating[ Moreover\ Fig[ 7 shows that\
if o increases\ at any given position both u and Ju increase[
As in the case of asymmetric heating\ this behaviour can
be explained by the increase of the energy generated by

Table 3
Values of the coe.cients Jan\ cn and Jdn for symmetric heating

n Jan cn Jdn

0 01 0[318×09−1 0[260
1 2[318×09−0 3[150×09−3 4[964×09−1

2 0[158×09−1 0[480×09−4 1[003×09−2

3 4[175×09−3 5[543×09−6 8[344×09−4

4 1[253×09−4 1[871×09−7 3[322×09−5

5 0[097×09−5 0[399×09−8 1[049×09−6

6 4[265×09−7 5[686×09−00 0[969×09−7

7 1[564×09−8 2[274×09−01 4[321×09−09

8 0[247×09−09 0[608×09−02 1[791×09−00

09 6[995×09−01 7[762×09−04 0[354×09−01

00 2[551×09−02 3[539×09−05 6[630×09−03

01 0[824×09−03 1[342×09−06 3[018×09−04

02 0[921×09−04 0[298×09−07 1[119×09−05

03 4[440×09−06 6[927×09−19 0[191×09−06

04 2[995×09−07 2[700×09−10 5[438×09−08

05 0[526×09−08 1[966×09−11 2[476×09−19

06 7[857×09−10 0[027×09−12 0[863×09−10

07 3[824×09−11 5[150×09−14 0[980×09−11

08 1[617×09−12 2[350×09−15 5[943×09−13

19 0[402×09−13 0[819×09−16 2[260×09−14

Table 4
Values of JNu− and Nu�

− for symmetric heating

o JNu− Nu�
−

−09 −83[629 06[693
−8 −75[883 06[574
−7 −67[841 06[556
−6 −69[471 06[536
−5 −50[745 06[517
−4 −41[633 06[597
−3 −32[100 06[476
−2 −22[108 06[455
−1 −11[611 06[434
−0 −00[558 06[412
−9[4 −4[805 06[400

9 9 06[499
9[4 5[976 06[377
0 01[245 06[366
1 14[371 06[341
2 28[367 06[316
3 43[352 06[390
4 69[473 06[263
5 77[914 06[235
6 096[906 06[205
7 016[746 06[174
8 049[833 06[141

09 065[708 06[106

viscous dissipation which yields a greater ~uid tem!
perature and\ as a consequence\ a greater buoyancy force[
The increase of the buoyancy force implies an increase of
the dimensionless velocity\ in the case of upward ~ow\
and a decrease of the dimensionless velocity\ in the case
of downward ~ow[

5[ Conclusions

The laminar and fully developed mixed convection in
a plane vertical channel has been analyzed by taking into
account the e}ect of viscous dissipation[ The ~ow has
been assumed to be parallel and each of the two boundary
planes has been considered as isothermal[ The governing
equations have been written in a dimensionless form
which is appropriate both for the case of di}erent bound!
ary temperatures "asymmetric heating# and for the case of
equal boundary temperatures "symmetric heating#[ The
solution of the dimensionless equations has been deter!
mined by a perturbation series method which employs
Br Gr:Re as the perturbation parameter[ Dimensionless
coe.cients suitable for the evaluation of the dimen!
sionless mean velocity\ of the dimensionless bulk tem!
perature and of the Nusselt numbers have been tabulated[
The dimensionless velocity\ the dimensionless tem!
perature and the Nusselt numbers have been evaluated
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Fig[ 7[ Plots of u and Ju vs y in the case of symmetric heating\ for di}erent values of o[

both in the case of asymmetric heating and in the case of
symmetric heating[ It has been shown that the e}ect of
viscous dissipation can be important especially in the case
of upward ~ow[ One of the consequences of the viscous
dissipation term in the energy equation is that the heat
transfer between the two boundaries of the channel is not
simply due to pure conduction as in the case of negligible
viscous dissipation[ Moreover\ for asymmetric heating\
it has been shown that viscous dissipation enhances the
e}ect of ~ow reversal in the case of downward ~ow\ while
it lowers this e}ect in the case of upward ~ow[ In fact\
viscous dissipation increases the buoyancy forces and\ as
a consequence\ the ~uid velocity in the upward direction[
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