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Abstract

Combined free and forced convection flow in a parallel-plate vertical channel is analysed in the fully developed region
by taking into account the effect of viscous dissipation. The two boundaries are considered as isothermal and kept either
at equal or at different temperatures. The velocity field, the temperature field and the Nusselt numbers are obtained by
a perturbation series method which employs a perturbation parameter proportional to the Brinkman number. Dimen-
sionless coefficients which allow the evaluation of the dimensionless mean velocity, of the dimensionless bulk temperature
and of the Nusselt numbers are determined. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

A constant defined by equation (6) [Pa m~']

a,, b, dimensionless coefficients defined by equation
(47)

Br  Brinkman number defined in equation (12)

¢, specific heat at constant pressure [J kg~' K ']

¢,, d, dimensionless coefficients defined by equations
(50) and (51), respectively

D = 2L, hydraulic diameter [m]

g acceleration due to gravity [m s™7]

Gr Grashof number defined in equation (12)

Jj non-negative integer number

k thermal conductivity [W m~' K ']

L channel width [m]

n non-negative integer number

Nu_, Nu,  Nusselt numbers defined by equation (24)
Nu_, Nu, Nusselt numbers defined by equation (25)
p pressure [Pa]

P = p+pgX, difference between the pressure and the
hydrostatic pressure [Pa]

Pr Prandtl number defined in equation (12)

Re Reynolds number defined in equation (12)

R; temperature difference ratio defined in equation (12)
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T temperature [K]

T,, T, prescribed boundary temperatures [K]

T, reference temperature defined in equation (13)

u dimensionless velocity component in the X-direction
defined in equation (12)

u,(y) dimensionless functions defined by equation (36)
i mean value of u defined in equation (16)

U velocity component in the X-direction [m s~']

U, reference velocity defined in equation (13)

U velocity [ms™']

X streamwise coordinate [m]

y dimensionless transverse coordinate defined in equa-
tion (12)

Y transverse coordinate [m].

Greek symbols

o = k/(pocy), thermal diffusivity [m*> s™']

B thermal expansion coefficient [K ~']

AT reference temperature difference defined either by
equation (14) or by equation (15)

¢ dimensionless parameter defined by equation (35)

0 dimensionless temperature defined by equation (12)
0, dimensionless bulk temperature defined by equation
a7

dynamic viscosity [Pa s]

= u/p,, kinematic viscosity [m? s™']

dimensionless parameter defined by equation (12)

=

v
=
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2. critical value of Z for the onset of flow reversal
p mass density [kg m~7]
po value of the mass density when T = T, [kg m 7).

1. Introduction

Many analyses of combined forced and free convection
flow in a parallel-plate vertical channel are available in
the literature. A comprehensive review of the literature
on this subject can be found in Aung [1]. Analytical and
numerical solutions for the temperature and the velocity
field have been obtained both for prescribed wall tem-
peratures and for prescribed wall heat fluxes. However,
all these theoretical studies are based on the hypothesis
that the effect of viscous dissipation in the fluid is negli-
gible.

One of the earliest analyses of laminar and fully
developed mixed convection in a parallel-plate vertical
channel with prescribed uniform temperatures at the
boundaries can be found in Tao [2]. More recent inves-
tigations on this subject are presented in Aung and
Worku [3], in Cheng et al. [4] and in Hamadah and
Wirtz [5]. These authors point out that the temperature
distribution in the fluid is uniform when both boundaries
are at the same temperature (symmetric heating) and is
a linear function of the transverse coordinate when the
boundaries are kept at different temperatures (asym-
metric heating). Therefore, in the case of asymmetric
heating, heat transfer between the two boundaries of the
channel occurs by pure conduction (conduction regime).
Moreover, the buoyancy force influences the velocity pro-
file and can give rise to flow reversal both for upward
flow and for downward flow.

In the literature, both for prescribed wall temperatures
and for prescribed wall heat fluxes, the analyses of fully
developed mixed convection are performed by analytical
methods, while the developing flow is analyzed by
numerical techniques [6-8].

The aim of this paper is to extend the studies available
in the literature on laminar and fully developed mixed
convection in a parallel-plate vertical channel with pre-
scribed wall temperatures, by taking into account the
effect of viscous dissipation. This effect is expected to be
relevant for fluids with high values of the dynamic vis-
cosity as well as for high-velocity flows. Indeed, when
viscous dissipation cannot be neglected, the temperature
field is dependent on the velocity field through a nonlinear
term in the energy balance equation. This coupling term
is absent when viscous dissipation is neglected. In the case
of asymmetric heating, a consequence of this coupling
is that no conduction regime is present when viscous
dissipation is taken into account. In the present paper,
the temperature profile and the velocity profile are
obtained by a perturbation method based on the per-
turbation parameter Br Gr/Re, where Br is the Brinkman

number, Gr is the Grashof number and Re is the Reynolds
number.

2. Governing equations

In this section, the momentum balance equation and
the energy balance equation are written in a dimen-
sionless form. Then, the solutions of these equations in
the case of negligible viscous dissipation and in the case
of forced convection are outlined.

Let us consider a Newtonian fluid which steadily flows
in a parallel-plate vertical channel. The thermal con-
ductivity, the thermal diffusivity, the dynamic viscosity
and the thermal expansion coefficient are considered as
constant. Moreover, the Boussinesq approximation as
well as the equation of state

p = poll =p(T—T,)] (M
are supposed to hold. The choice of the spatial coor-
dinates is described in Fig. 1. In particular, the X-axis is
parallel to the gravitational field, but with the opposite
direction. It is assumed that the only nonzero component
of the velocity field U is the X-component U. Thus, as a
consequence of the mass balance equation, one obtains

A X
cool hot
wall wall
g
5971 B 2 Y

Fig. 1. Drawing of the system and of the coordinate axes.
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oU

Z =0
1.4

so that U depends only on Y. The streamwise and the
transverse momentum balance equations yield [9]

(€)

1 oPp d*U
ﬁg(T*To)*Ea,+VdYZ =0 (3)
opP
oY @

where P = p+ pog X is the difference between the pressure
and the hydrostatic pressure. On account of equation (4),
P depends only on X so that equation (3) can be rewritten
as

1dp d°U

Edj,+vdy2=0. )

Bg(T—T,)—

Let us assume that the walls of the channel are isothermal.
In particular, the temperature of the boundary Y = — L/2
is T, while the temperatureat Y = L/21is T, with T, > T.
These boundary conditions are compatible with equation
(5) if and only if dP/dX is independent of X. Therefore,

there exists a constant 4 such that
dpP

— = A. 6
ax (6)

On account of equation (6), by evaluating the derivative
of equation (5) with respect to X, one obtains

oTr
1.4
so that also the temperature depends only on Y.

By taking into account the effect of viscous dissipation,
the energy balance equation can be written as [9]

d*T v (dU\?
e

=0 )

Equations (5) and (8) allow one to obtain a differential
equation for U, namely

v~ o)

dy* o, \dY)’

)

The boundary conditions on U are both the no slip con-
ditions

U(—-L/2)=U(L/2)=0 (10)
and those induced by the boundary conditions on 7 and
by equations (5) and (6), namely

U A peTi—T,)

dY?|y=—12 M v ’

U A peT-Ty) o
dY?y=rp. M v

The solution of equations (9)—(11) yields the velocity

field. Equations (9)—(11) can be written in a dimen-
sionless form by employing the dimensionless quantities

U T—T, Y gBATD?
u=-—r—-, 0= > V=5 r=———_—",
U, AT D )2

U,D v uU;
Re — Pr=", Br=
¢ v U Ty kAT’
Gr T,—T,

—, R;= 12
Re’ Rr=""x7 (12)
where D = 2L is the hydraulic diameter. The reference
velocity U, and the reference temperature 7, are given by

AD> T,+T,

T 48y To 2

Uy = : (13)

Moreover, the reference temperature difference AT is
given either by

AT =T,—T, (14)
if T, < T, or by

v2

AT =

= (135)
¢,D?

if T, =T, As a consequence, the dimensionless par-
ameter R, can only assume the values 0 or 1. More
precisely, the temperature difference ratio R, is equal
to 1 for asymmetric heating, T, < 7T,, while R; = 0 for
symmetric heating, 7, = 7).

The dimensionless mean velocity # and the dimen-
sionless bulk temperature 60, are given by

1/4
ﬁ=2j udy (16)

2 (14
Obzﬁj uldy. (17

—1/4

Equation (6) implies that A4 can be either positive or
negative. If 4 > 0, then U,, Re and E are negative, i.e.
the flow is downward. On the contrary, if 4 < 0, the flow
is upward, so that U,, Re and E are positive. On account
of equation (12), equations (9)—(11) can be rewritten as

4 2
Su_op, (%) a8)
dy4 dy
u(—1/4) =u(1/4) =0 (19)
d*u RZ  d%u RE
— = 484+ -1, — = 48 "=
dy2 y=—1/4 2 dy2 v=1/4 2

(20)

As a consequence of equations (5), (8) and (12), the
dimensionless temperature 0 can be evaluated either by
integrating the equation
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d20 2
— +Br <%> =0 Q1)
dy? dy
or by the equation
1 d?
0=—— (48 + ”>. (22)
E dy?

Equations (18)—(22) show that the dimensionless velocity
profile and the dimensionless temperature profile depend
on three parameters, namely the ratio E = Gr/Re, the
Brinkman number Br and the temperature difference
ratio R;. A Nusselt number can be defined at each bound-
ary, namely

P Nu, = 24T 23
“=arav, ., M Taray,,,

On account of equation (23), it is easily proved that Nu_
and Nu, can be employed to evaluate the boundary heat
fluxes. Indeed, —kATNu_/D and —kATNu_ /D yield the
Y-component of the heat flux density evaluated at
Y= —L/2 and at Y = L/2, respectively. As a conse-
quence of equations (12) and (22), equation (23) can be
rewritten as

do 1 du
T .
dy = —1/4 = dy = 14
de 1d°
Nu, =~ -4 . (24)
dyl,_ 14 Edyli=1/a

On the other hand, the customary definition of the Nus-
selt numbers is based on the bulk temperature as the
reference fluid temperature, namely

N 2 do 2Nu_
. =—"— =——,
Rr+20,dy|,_ _,,, Rp+20,
. 2 do 2Nu
Ny, = ——— — = 7+, 25
T Ry—20,dy|,_,, Rr—20, @)

On account of equations (12) and (25), it is easily proved
that Nu_ and ]\7u+ are such that k(7,— Tb)]\7u,/D and
k(T,— T>)Nu /D yield the Y-component of the heat flux
density evaluated at Y = —L/2 and at ¥ = L/2, respec-
tively. However, equation (25) shows that Nu_ and
Nu, are ill-defined if 0, = + R;/2.

Equation (21) shows that, if the viscous dissipation is
negligible so that Br = 0, the dimensionless temperature
0 and the dimensionless velocity u are uncoupled. In this
case, equations (18)—(20) can be easily solved and yield

=y 1
"= <7y RT+24> <ﬁ — y2>. (26)

Equation (26) corresponds to the velocity profile deter-
mined by Aung and Worku [3]. By substituting equation
(26) in equations (22) and (24), one obtains

0=2R;y, Nu_ = Nu, =2R;. 27

The substitution of equations (26) and (27) in equations
(16) and (17) yields #=1 and 6, = ER;/2880. On
account of equation (27), when Br = 0, heat is transferred
by pure conduction for asymmetric heating (R;=1),
while, for symmetric heating (R; = 0), the temperature is
uniform and no heat transfer occurs. Both for symmetric
heating with an arbitrary value of Z and for asymmetric
heating with E = 0, equation (26) yields the usual Hagen—
Poiseuille velocity profile. This result is conceivable since,
for symmetric heating, equation (27) shows that the tem-
perature is uniform, so that no buoyancy force can be
present if viscous dissipation is neglected. Moreover, for
asymmetric heating, the hypothesis E = 0 implies that
Gr = 0, i.e. that buoyancy forces are vanishing.

In the case of asymmetric heating, when buoyancy
forces are dominant, i.e. when E — + o0, equations (12)
and (26) yield
UD u y 24\ /1 ) y /(1 5
vGr 2T (3 - E) <E - )Jimg(m - )

(28)
Equation (28) yields Batchelor’s velocity profile for free
convection [10].

With T, < T, and U, > 0 (upward flow), one expects
that for a sufficiently high value of E a flow reversal
induced by the buoyancy forces occurs at the cool wall
y = —1/4. On account of equation (26), the critical value
=, such that for E > E, this flow reversal occurs can be
obtained by the condition

_du
- dy

i.e. B, = 288. For T, < T, and U, < 0 (downward flow),
one expects that there exists a negative critical value E,
of E such that for E < E; a flow reversal occurs at the
hot wall y = 1/4. In analogy with equation (29), the criti-
cal value E, can be obtained by the relation

_ du
-5

[1]

0 =12—

y=—1/4

y (29)

R
E

[1]

0 = 12—

y=1/4

y (30)

R|
N

ie. E. = —288. In Fig. 2, plots of u vs y expressed by
equation (26) are reported for asymmetric heating
(Ry=1)with E =0, E = 200 and E = 400. As expected,
the plot with E = 400 presents a flow reversal near the
cool wall y = —1/4. As it can be easily inferred from
equation (26), the plotsof ufor 2 = —200and E = —400
are easily obtained from Fig. 2 by performing a reflection
of the y-axis.

Another simple solution of equations (18)—(21) can be
obtained when buoyancy forces are negligible and viscous
dissipation is relevant. In this case, the parameter
Z = Gr/Re is zero, so that a purely forced convection
occurs. Obviously, the Hagen—Poiscuille velocity profile,

1
u= 24<E—y2> (31)
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Fig. 2. Plots of u vs y in the case of asymmetric heating, for different values of = and Br = 0.

is present within the channel. Indeed, both for symmetric
and for asymmetric heating, equation (31) is the solution
of equations (18)—(20) when E = 0. Since the boundary
conditions on 6 are 0O(—1/4) = —R;/2 and
0(1/4) = R/2, equations (21) and (31) yield

3B
0= —192Bry* + 2R+ Tr. (32)
By substituting equations (31) and (32) in equations (16)

and (17), one obtains # = 1 and 6, = 24Br/35. Equations
(24) and (32) yield

Nu_ =2R;+12Br, Nu, =2R;—12Br (33)

while, on account of equations (25) and (33), one obtains

. R+ 6Br . R;—6Br

Nu = 1803 s agpr M = 19035R, —agy
(34)

Equations (32) and (34) agree with the results obtained
by Cheng and Wu [11] in the case of forced convection
with asymmetric heating. For symmetric heating
(Rr = 0), equation (34) yields Nu_ = Nu, = 35/2. The
same value of Nu_ and Nu, is obtained for asymmetric
heating with Br — 0. Equation (33) reveals that, for
asymmetric heating with Br < 1/6, the wall heat flux at
y = 1/4 is directed inside the channel, while at y = —1/4
is directed outside the channel. On the other hand, for
asymmetric heating with Br > 1/6 and for symmetric
heating with any nonzero value of Br, the wall heat flux
is directed outside the channel both at y = 1/4 and at
y = —1/4.1In Fig. 3, plots of 6 vs y expressed by equation
(32) are reported for asymmetric heating (R, = 1) with
Br=0, Br=2 and Br=4. This figure shows that,
although the conduction regime holds only for Br =0,
there exists a region around y = 0 where 0 is approxi-
mately a linear function of y also for Br # 0.

3. Perturbation method

In this section, equations (18)—(20) are solved by a
perturbation series method. Then, equation (22) is
employed to determine the dimensionless temperature
field.

Let us define the dimensionless parameter
pgD

&

&= Br& = RePr (35)
P

Equation (35) shows that ¢ does not depend on the ref-
erence temperature difference AT. It is easily verified that,
for a fixed value of E # 0, the solution of equations (18)—

(20) can be expressed by the perturbation expansion
u(y) = ug(y)+u (Me+uw(Me+-- = Y u(»)e'.
n=0

(36)
The perturbation method solution of equations (18)—(20)
is as follows [12]. First, one substitutes equation (36) in
equations (18)—(20) and collects terms having like powers
of ¢. Then, one equates the coefficient of each power of ¢
to zero. Finally, one is led to a sequence of boundary
value problems which can be solved in succession to
obtain the unknown functions u,(y).

For n = 0, one obtains the boundary value problem

d4
o _o (37)
dy*
ug(—1/4) = uy(1/4) =0 (38)
d?u, = 2u, =
— 48+ R,=, — _48-R,=.
dy? = —1/4 27 @y s 2
(39)

The solution of equations (37)—(39) is given by
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Fig. 3. Plots of 0 vs y in the case of asymmetric heating, for different values of Br and Z = 0.

g 1
Uo(y) = ({R1~+24> (R - y2>. (40)

Obviously, the right-hand side of equation (40) coincides
with the dimensionless velocity profile in the case Br = 0,
as it can be checked by a comparison with the right hand
side of equation (26). On account of equations (18)—
(20) and (36), one obtains the following boundary value
problem fulfilled by the unknown functions u,(y), for
every integer n > 0:

dhu, ot du;du, oy (41
ot Sdy dy

u,(—1/4) = u,(1/4) =0 (42
d d

du, L Y 43)
dy?b=—1a dy?h-1e

Equation (40) and the iterative solution of equations
(41)—(43) allow one to determine the functions u,(y).
Then, on account of equations (22), (36) and (40), the
dimensionless temperature 6 can be expressed as
1 & du,(y) ,
—=¢".

0(y) =2R;y—= Y,

44
—pn=1 dy2 ( )

The Nusselt numbers Nu_ and Nu_ can be evaluated by
employing equations (24) and (44), namely

Nu_ =2R;+ Y az (45)
1

n=

Nu, =2R,+ Y by (46)
n=1
where the coefficients @, and b, are given by
1 d*u, d*u,
-= . (47
= dy? = — 14 dy? =14

s bnzi

a, =

—
=
=

On account of equations (16), (17), (36) and (44), the
mean dimensionless velocity # and the bulk value of the
dimensionless temperature 0, can be expressed as

a=1+) ¢¢ (48)
n=1
48 (1 ER, 1o
O =7 <E - 1>+ 28800 En; e “9)

where the coefficients ¢, and d, are given by

1/4
c, = ZJ u,(y)dy (50)

—1/4

d _2 i JM du,(y) du,_;(y)
! ES0) 1 dy dy

As a consequence of equations (47) and (51), an inte-
gration of both sides of equation (41) with respect to y
in the interval [—1/4,1/4] yields a relation between the
coefficients a,, b, and d,, namely

dn = 2(an+1 _bn+l)' (52)

dy. (51)

4. Asymmetric heating

In this section, the perturbation method described in
the preceding section is employed to analyse the case of
asymmetric heating (R; = 1).

When the boundary temperatures 7', and 7, are differ-
ent, both the dimensionless velocity u and the dimen-
sionless temperature 0 depend on the dimensionless par-
ameters ¢ and . When the flow is upward, ¢ and E are
positive. On the other hand, when the flow is downward,
¢ and E are negative. Although the sign of ¢ and that of
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Table 1
Values of the coefficients a,, b,, ¢, and d, for asymmetric heating with £ = 100 and E = 500
= =100 = =500
n a, —b, [ d, a, —b, ¢, d,
1 9.535x 1072  1.620x 10" 1.558x1072 1.504x 1072 3407x107%  1.007x107"  4.658x107% 9.357x 107}
2 3.235x107°  4.284x107°  4.688x107* 5.683x10°* 8.989x107* 3.779x107* 1.492x10* 5.121x10°*
3 1.263x107* 1.578x107* 1.785x107° 2.422x10°° 7.858x107° 1.775x107* 8.265x107° 2.987x 107
4 5455x107°  6.653x107°  7.633x1077  1.108 x 10~° 4732x107°  1.020x 107>  4.794x107° 1.911x10°°
5 2.515x 1077 3.027x1077  3.500x 10~*  5320x10~* 3.185x 1077 6.368x 1077 3.069x 1077 1.277x 1077
6 1.213x107%  1.447x107%  1.682x107° 2.642x107° 2.173x107%  4.212x107%  2.051x107°% 8.857x10~°
7 6.043x 107" 7.169x 107" 8.364x 107" 1.347x10°"° 1.533x107°  2.896x10™° 1.422x107° 6.304x10°'°
8 3.087x 107" 3.646x 107" 4265x 1072 7.002x 10" 1.103x 107" 2.049x 107" 1.012x 107" 4.580x 10"
9 1.608 <1072 1.893x 1072 2.219x10°" 3.699x10~" 8.085x 1072 1.482x 107" 7.357x107"% 3.383x 10"
10 8.506x 107" 9.990x 10~ 1.173x10~™ 1.981x10~" 6.012x107"  1.090x 107> 5434x10"" 2.532x10°"
11 4.559x 107" 5344x107" 6.280x107'° 1.072x10~" 4.525x 107" 8.138x 107" 4.068x10~'* 1.917x10~"
12 2.470x 107" 2.890x 107" 3.400x10~'"7 5.858x 10" 3.441x107"%  6.145x107"° 3.080x107" 1.465x 10"
13 1.351x 1077 1.578x107"7  1.858 x 10~ 3.226x 10~ '® 2.639x 107" 4.687x107" 2354x10°' 1.129x 107"
14 7.444x 107" 8.687x 107" 1.024x107" 1.789x10°" 2.040x 1077 3.605x 1077 1.814x107"7 8.761x 10~ '
15 4131x107* 4.816x 107 5.679x1072" 9.985x 102! 1.587x 107" 2.793x 107"  1.408 x 10~ 6.840x 10"
16 2.306x 1072 2.686x 1072 3.169x 10" 5.602x 10~ 1.242x 107" 2.178x 107" 1.099x 10" 5.370x 10~
17 1.295x 1072  1.507x 102 1.778x10~* 3.158x 10~ * 9.771x 107" 1.708 x 107% 8.628x10~*' 4.236x 10~
18 7.301x 107> 8.490x 107> 1.003x 107> 1.788x 10~ 7.722x 1072 1.346x 107" 6.807x 107 3.356x 10~*
19 4135x 107 4.805x 107 5.677x107* 1.016x 10~ % 6.128x107%  1.065x 107 5.393x107% 2.670x10"*
20 2.351x 1072 2.730x 1072 3.227x10°% 5.796x 10~% 4.881x 107> 8.467x107** 4.290x10** 2.131x10"*

= are constrained to be equal, their absolute values are
independent.

In Table 1, the first 20 coefficients, a,, b,, ¢, and d,
defined by equations (47), (50) and (51) are evaluated
for 2 = 100 and E = 500. In Iable 2, tAhe values of the
Nusselt numbers Nu_, Nu., Nu_ and Nu, are reported
for E = 100 and E = 500. To obtain the values reported
in Table 2, the first 20 terms of the perturbation series

Table 2

are sufficient when E = 100, while the first 30 terms are
necessary for the computation when E = 500.

The values of a,, b,, ¢, and d, reported in Table 1 refer
to upward flows. However, as is shown in the following,
the values reported in Table 1 can also be employed to
evaluate a,, b, ¢, and d, for downward flow with
Z = —100and E = —500. Indeed, the dimensionless vel-
ocity u is determined by equations (18)—(20). It is easily

Values of Nu_, Nu,, Nu_ and Nu, for asymmetric heating with 2 = 100 and E = 500

2 =100 2 =500

€ Nu Nu Nu_ ]Vm Nu Nu, Nu_ ]Vm
0 2.000 2.000 3.740 4.299 2.000 2.000 2.969 6.128
0.5 2.048 1.918 3.806 4.154 2.017 1.949 3.002 5.942
1 2.099 1.834 3.872 4.003 2.035 1.895 3.034 5.755
2 2.205 1.657 4.011 3.681 2.072 1.782 3.101 5.371
3 2.319 1.471 4.156 3.327 2.113 1.658 3.171 4.970
4 2.443 1.271 4.309 2.935 2.157 1.522 3.244 4.544
S 2.578 1.058 4.471 2.498 2.207 1.370 3.321 4.084
6 2.726 0.828 4.642 2.005 2.264 1.200 3.406 3.577
7 2.889 0.578 4.825 1.441 2.331 1.004 3.502 3.003
8 3.070 0.305 5.022 0.786 2414 0.773 3.612 2.330
9 3.275 0.004 5.234 0.011 2.520 0.490 3.748 1.497

10 3.508 —0.332 5.465 —0.928 2.671 0.119 3.930 0.370
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verified that, when R; = 1, these equations are invariant
under the transformation

u—u, e¢—e E2—->—E y-o —) (53)

This symmetry is purely mathematical, since, as it has
been pointed out above, it is physically meaningless to
keep ¢ fixed while the sign of E is reversed. As a conse-
quence of equation (36) and of the symmetry of equations
(18)—(20) expressed by equation (53), the flow reversal
transformation E - —E implies u,(y) — u,(—y). Then,
on account of equations (47), (50) and (51), the flow
reversal transformation E - —Z yields a, - b,, b, — a,,
¢,—c,and d, > —d,,. N

In Table 3, the Nusselt numbers Nu_, Nu,, Nu_ and
Nu, are reported for 2 = —100 and E = —500. As in
the corresponding cases of upward flow, the first 20 terms
of the perturbation series are employed for the com-
putation when E = — 100, while the first 30 terms are
necessary when 2 = — 500.

Tables 2 and 3 show that heat transfer is enhanced at
y = —1/4 when the modulus of ¢ is increased, since both
Nu_ gnd Nu_ increase. On the other hand, both Nu,
and Nu_ are decreasing functions of the modulus of .
This behaviour of the heat transfer coefficient is exhibited
for upward as well as for downward flow. In particular,
when E = 100, Nu, and Nu_ are zero for a value of ¢ in
the interval 9 < ¢ < 10 and for greater values of ¢ they
become negative. This sign change of Nu, and Nu_ is
due to the change of direction of the heat flux density
vector at the hot wall when viscous dissipation is
sufficiently relevant.

In Fig. 4, plots of u and 0 in the case E = 100 are
reported for e =0, ¢ = 8 and ¢ = 12. The first 20 terms
of the perturbation series are sufficient to obtain these
plots. Figure 4 shows that the dimensionless velocity and
the dimensionless temperature at each position are

Table 3

Values of Nu_, Nu,, Nu_ and 1\7u+ for asymmetric heating with 2 =

increasing functions of ¢. This behaviour can be explained
as follows. A greater energy generated by viscous dis-
sipation yields a greater fluid temperature and, as a conse-
quence, a greater buoyancy force. The increase of the
buoyancy force implies an increase of the velocity in the
upward direction.

In Fig. 5, the case E = 500 is considered. The plots of
u for ¢ = 0 and ¢ = 8 display a flow reversal close to the
boundary y = —1/4, while no flow reversal is present in
the plot for ¢ = 12. Indeed, viscous dissipation tends to
increase the buoyancy force at each position and, as a
consequence, it tends to contrast the flow reversal at the
cool wall.

Figures 6 and 7 refer to E = —100 and E = — 500,
respectively. The plots of u and 0 reported in these figures
reveal that, if the Brinkman number is increased, u
decreases and 6 increases. However, the change of the
dimensionless temperature due to viscous dissipation is
not so sensible as in the case of upward flow. Figure 7
shows that the flow reversal next to the hot wall becomes
stronger as Br increases. Indeed, the behaviour of the
dimensionless velocity profile for increasing values of Br
is explained again by the increase of the buoyancy forces.

5. Symmetric heating

In this section, the perturbation method is employed
to study the velocity profiles and the temperature profiles
in the case of symmetric heating (R, = 0).

When the boundary temperatures 7', and 7, are equal,
equations (18)—(20) show that the dimensionless velocity
u is a symmetric function of y which depends only on
the dimensionless parameter ¢. Therefore, on account of
equation (22), also 6 is a symmetric function of y and is

—100 and E = —500

2= —-100 2= -500

—¢ Nu_ Nu Nu_ ]Vm Nu_ Nu, Nu_ ]Vm
0 2.000 2.000 4.299 3.740 2.000 2.000 6.128 2.969
0.5 2.080 1.953 4.437 3.676 2.049 1.983 6.311 2.937
1 2.158 1.908 4.571 3.614 2.097 1.967 6.494 2.905
2 2.308 1.821 4.823 3.492 2.188 1.935 6.859 2.841
3 2.451 1.740 5.059 3.376 2.272 1.904 7.227 2.777
4 2.588 1.663 5.278 3.264 2.352 1.874 7.602 2.713
S 2.719 1.591 5.485 3.156 2.427 1.845 7.991 2.649
6 2.845 1.523 5.679 3.051 2.497 1.815 8.397 2.584
7 2.966 1.458 5.863 2.951 2.564 1.786 8.829 2.517
8 3.083 1.396 6.036 2.853 2.627 1.757 9.295 2.450
9 3.195 1.337 6.201 2.759 2.687 1.728 9.805 2.380

10 3.304 1.281 6.358 2.667 2.743 1.699 10.374 2.310
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Fig. 4. Plots of u and 0 vs y in the case of asymmetric heating, for different values of ¢ and & = 100.
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Fig. 5. Plots of u and 6 vs y in the case of asymmetric heating, for different values of ¢ and E = 500.
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Fig. 6. Plots of v and 0 vs y in the case of asymmetric heating, for different values of ¢ and E = —100.

0.4
e=—12
0.2 —
0o
-0.2 e=0
-0.4
-0.2 -0.1 0 0.1 0.2

Fig. 7. Plots of u and 6 vs y in the case of asymmetric heating, for different values of ¢ and E = — 500.
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such that 20 depends only on ¢. Equation (36) ensures
that the symmetry of u implies the symmetry of u,(y) for
every n = 0. Moreover, functions u,(y) do not depend on
=. As a consequence of the symmetry of 0 and of u,(y),
equations (24), (25) and (47) imply that Nu, = —Nu_,
Nu, = Nu_ and b,= —a, Equations (24) and (25)
ensure that ENu_ and Nu_ are uniquely determined by
¢, while equations (47), (50) and (51) show that Za,, ¢,
and Ed, do not depend on E. As in the case of asymmetric
heating, both ¢ and E are positive when the flow is
upward, while they are negative when the flow is down-
ward.

In Table 4, the first 20 coefficients =a,, ¢, and Ed, are
evaluated. In Table 5, the values of ENu_ and Nu_ are
reported in the range — 10 < ¢ < 10. To obtain the values
reported in Table 5, the first 20 terms of the perturbation
series are sufficient. The value of Nu_ for ¢=0 is
obtained as a limit for ¢ — 0 and coincides with that given
by equation (34) when R, =0, i.e. 35/2 = 17.5.

In Fig. 8, the velocity u and the product 26 are plotted
vs y for some values of ¢ in the range — 12 < ¢ < 12. This
figure shows that the effect of viscous dissipation on the
dimensionless velocity profile and on the dimensionless
temperature profile is more significant in the case of
upward flow (¢ > 0) than in the case of downward flow
(¢ < 0). This behaviour is similar to that observed in the
case of asymmetric heating. Moreover, Fig. 8 shows that,
if ¢ increases, at any given position both # and E0 increase.
As in the case of asymmetric heating, this behaviour can
be explained by the increase of the energy generated by

Table 4
Values of the coefficients Zaq,, ¢, and Zd, for symmetric heating

n Za, C, 2d,
1 12 1.429x 1072 1.371
2 3.429x 107! 4.261x107* 5.075x 1072
3 1.269 x 1072 1.591x10°° 2.114x 1073
4 5.286x107* 6.654x 1077 9.455x 1073
5 2.364x 107 2.982x107* 4.433x10°°¢
6 1.108 x 10~° 1.400 x 10~° 2.150x 1077
7 5.376 x 10% 6.797 x 10~ 1.070x 10~®
8 2.675x107° 3.385x 10712 5.432x1071°
9 1.358x 10" 1.719 x 10~ 2.802x 10"
10 7.006 x 10~ "2 8.873x 107" 1.465x 1072
11 3.662x 107" 4.640x10°'¢ 7.741x 107
12 1.935x 107" 2.453x 107" 4.129x 107"
13 1.032x 107" 1.309 x 10~ '8 2220 1071
14 5.551x 107" 7.038 x 10~ 1.202x 107"
15 3.006 x 10~ 3.811x 102 6.549x 10"
16 1.637x 107" 2.077 x 1072 3.587x 1072
17 8.968 x 10~ 1.138x 107% 1.974 x 10~
18 4.935x 1072 6.261 x 10~% 1.091 x 10~
19 2.728 x 1072 3.461x10°% 6.054x 10~
20 1.513x 107 1.920 x 10~ 3.371x107%

Table 5
Values of ENu_ and Nu_ for symmetric heating

I3 ENu_ Nu_
—10 —94.730 17.704
-9 —86.994 17.685
-8 —78.952 17.667
-7 —70.582 17.647
—6 —61.856 17.628
-5 —52.744 17.608
—4 —43.211 17.587
-3 —33.219 17.566
-2 —22.722 17.545
—1 —11.669 17.523
—0.5 —5.916 17.511
0 0 17.500
0.5 6.087 17.488
1 12.356 17.477
2 25.482 17.452
3 39.478 17.427
4 54.463 17.401
5 70.584 17.374
6 88.025 17.346
7 107.017 17.316
8 127.857 17.285
9 150.944 17.252
10 176.819 17.217

viscous dissipation which yields a greater fluid tem-
perature and, as a consequence, a greater buoyancy force.
The increase of the buoyancy force implies an increase of
the dimensionless velocity, in the case of upward flow,
and a decrease of the dimensionless velocity, in the case
of downward flow.

6. Conclusions

The laminar and fully developed mixed convection in
a plane vertical channel has been analyzed by taking into
account the effect of viscous dissipation. The flow has
been assumed to be parallel and each of the two boundary
planes has been considered as isothermal. The governing
equations have been written in a dimensionless form
which is appropriate both for the case of different bound-
ary temperatures (asymmetric heating) and for the case of
equal boundary temperatures (symmetric heating). The
solution of the dimensionless equations has been deter-
mined by a perturbation series method which employs
Br Gr/Re as the perturbation parameter. Dimensionless
coefficients suitable for the evaluation of the dimen-
sionless mean velocity, of the dimensionless bulk tem-
perature and of the Nusselt numbers have been tabulated.
The dimensionless velocity, the dimensionless tem-
perature and the Nusselt numbers have been evaluated
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Fig. 8. Plots of u and E0 vs y in the case of symmetric heating, for different values of ¢.

both in the case of asymmetric heating and in the case of
symmetric heating. It has been shown that the effect of
viscous dissipation can be important especially in the case
of upward flow. One of the consequences of the viscous
dissipation term in the energy equation is that the heat
transfer between the two boundaries of the channel is not
simply due to pure conduction as in the case of negligible
viscous dissipation. Moreover, for asymmetric heating,
it has been shown that viscous dissipation enhances the
effect of flow reversal in the case of downward flow, while
it lowers this effect in the case of upward flow. In fact,
viscous dissipation increases the buoyancy forces and, as
a consequence, the fluid velocity in the upward direction.
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